表面效應
表面效應是指納米微粒表面原子與總原子數之比,隨粒徑的變小而急劇增大后引起性質上的變化。納米材料的顆粒尺寸小,位于表面的原子所占的體積分數很大,產生相當大的表面能。隨著納米粒尺寸的減小,比表面積急劇加大,表面原子數及比例迅速增大。由于表面原子數增多,比表面積大,使得表面原子處于“裸露"狀態(tài)。周圍缺少相鄰的原子,原子配位數不足,存在未飽和鍵,導致了納米顆粒表面存在許多缺陷,使這些表面具有很高的活性,特別容易吸附其他原子或與其他原子發(fā)生化學反應。這種表面原子的活性不但引起納米粒子表面輸運和構型的變化,同時也引起表面電子自旋、構象、電子能譜的變化。它是納米粒子及其固體材料的*重要的效應之一。
小尺寸效應
隨著顆粒尺寸的量變,在一定條件下會引起顆粒性質的質變。由于顆粒尺寸變小所引起的宏觀物理性質的變化稱為小尺寸效應。對超微顆粒而言,尺寸變小,同時其比表面積亦顯著增加,從而產生如下一系列新奇的性質。當超細微粒的尺寸與光波波長、德布羅意波長以及超導態(tài)的相干長度或透射深度等物理特征尺寸相當或更小時,晶體的周期性的邊界條件將被破壞;在非晶態(tài)納米微粒的顆粒表面層附近原子密度減少, 磁性、內壓、光吸收、熱阻、化學活性、催化性及熔點等與普通粒子相比都有很大變化, 這就是納米粒子的小尺寸效應。納米材料之所以具有這些奇特的宏觀結構特征, 是由于在納米層次上, 物質的尺寸不大不小, 所包含的原子、分子數不多不少, 其運動速度不快不慢。而決定物質性質的正是這個層次的由有限分子組裝起來的集合體, 而不再是傳統(tǒng)觀念上的材料性質直接決定于原子和分子。介于物質的宏觀結構與微觀原子、分子結構之間的層次(即小尺寸效應)對材料的物性起著決定性作用。
量子尺寸效應
當粒子尺寸下降到某一值時, 金屬費米能級附近的電子能級由準連續(xù)變?yōu)殡x散能級的現(xiàn)象,納米半導體微粒存在不連續(xù)的*被占分子軌道和*低未被占分子軌道能級,能隙變寬的現(xiàn)象均稱為量子尺寸效應。當能級間距大于熱能、磁能、光子能量或超導態(tài)的凝聚能時,則引起能級改變、能隙變寬, 使粒子的發(fā)射能量增加,光學吸收向短波方向移動,直觀上表現(xiàn)為樣品顏色的變化,這些必導致納米晶體材料的光、熱、磁、聲、電等與常規(guī)材料有顯著的不同,如特異的光催化、較高的非線性光學效應等。
量子隧道效應
量子隧道效應是從量子力學的粒子具有波粒二象性的觀點出發(fā),解釋粒子能夠穿越比總能量高的勢壘,這是一種微觀現(xiàn)象。微觀粒子具有貫穿勢壘的能力稱為隧道效應。